Development of multi-function CO2 Heat Pump Water Heater
Background of multi-function water heater

Market trend of gas combustion multi-function water heater

Energy consumption at residence

- Annual report of residential energy statistics (1999)
- Proceed energy saving based on “Top Runner Approach” standards of energy efficiency

Market of multi-function hot water heater is glowing

Need to develop high efficiency system
Main task of multi-function heat pump water heater

Characteristics of multi-function system

- Use hot water in the storage tank directly for hot tap water
- Use hot water in the storage tank indirectly for heat source of space heating

Main problem
Return water from primary heating circuit is mixed into cold feed-water

Heat pump COP becomes down with higher inlet water temp.
Countermeasures of task

Characteristics of CO₂ heat pump

- Decline of heating capacity and COP under high inlet water temp. cond.

Isotherm.

- To use return water for tap water (medium temp. water)

Countermeasures for decline of COP

- To improve heat pump COP at higher inlet water temp. condition

Development of Cascade heat process system

Development of ejector cycle for heat pump water heater
Outline of cascade heat process system

Conventional storage tank
- Medium temp. water can not use
- Heat pump COP becomes down

Cascade heat process system
- 2 additional water return ports for primary heating circuit to prevent to mix water
- 2 additional outlet ports to use medium temp. water for hot tap water

Characteristics
- Too low temp. for hot tap water
- Cause inlet water temp. for heat pump rising and COP becomes down

- Heat pump COP becomes down

Medium temp. water and cold feed-water flow into tank by turns.
- Too low temp. for hot tap water
- Cause inlet water temp. for heat pump rising and COP becomes down

3 different temp. water in the 3 portions of the storage tank
Optimization of port position for cascade heat process system

Basic idea:
Fit for general working pattern

- Tank volume 460L
- Space heater
- Return port
- Feed-water
- Outlet port
- Hot tap water

<Optimization of upper additional outlet port>

- Potential amount of hot tap water
- Outlet port position

<Characteristic of boundary layer between hot and cold water>

- Tank volume 460L
- Space heater
- Return port
- Feed-water
- Outlet port
- Hot tap water

Basic Idea:
Fit for general working pattern

- Tank volume 460L
- Space heater
- Return port
- Feed-water
- Outlet port
- Hot tap water

<Optimization of upper additional outlet port>

- Potential amount of hot tap water
- Outlet port position

<Characteristic of boundary layer between hot and cold water>

- Test result
- Simulation analysis
Evaluation result of cascade heat process system

operation pattern of tap water, floor heating, bathroom heating

- Tap water: IBEC L mode
- Floor heating: area 13.2m², 8hr
- Bathroom heating: heating capacity 2kW, 20min
- Ambient temp.: 7°C
- Feed-water temp.: 9°C

Position of storage tank

Conventional tank system

- Above 70°C
- 70°C - 35°C
- 35°C - 20°C
- 20°C - 0°C

Cascade heat process system

- Above 70°C
- 70°C - 35°C
- 35°C - 20°C
- 20°C - 0°C
Outline of ejector cycle

Ejector cycle for CO2 heat pump

- Kinetic energy loss of CO2 is 3 times higher than HFCs

Benefit of ejector cycle

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ambient temp.(°C)</th>
<th>feed-water temp.(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Intermediate</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Summer</td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>

JRA4050 standard

Ejector with variable nozzle

CO2

HFCs

enthalpy

Ejector cycle

Driving flow

Suction flow

Pressure rise

Higher inlet water temp.

Kinetic energy loss

CO2 kinetic energy loss is 3 times higher than HFCs

Winter Intermediate Summer

feed-water temp.

Winter

Intermediate

Summer

JRA4050 standard

COP

10% UP

6.0 kW ejector

6.0 kW conventional

DENSO
1. We have developed cascade heat process system, and have evaluated this performance at field test.

2. We have started to product multi-function CO2 heat pump water heater using variable nozzle ejector cycle at July 2003.